Remote Sensing of Environment 250 (2020) 112035

g =

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Shallow water bathymetry with multi-spectral satellite ocean color sensors: = M)

Check for

Leveraging temporal variation in image data e

-a,b,:;:

Jianwei Wei
Lide Jiang™',

, Menghua Wang®, Zhongping Lee®, Henry O. Bricefio’, Xiaolong Yu",
Rodrigo Garcia®®, Junwei Wang®, Kelly Luis®

#NOAA Center for Satellite Applications and Research, College Park, MD 20740, USA

Y Global Science & Technology, Inc., Greenbelt, MD 20770, USA

¢ University of Massachusetts Boston, School for the Environment, Boston, MA 02125, USA

9 Florida International University, Southeast Environmental Research Center, Miami, FL 33199, USA

€ Xiamen University, State Key Laboratory of Marine Environmental Science, Xiamen, Fujian 361005, China

f Colorado State University, Cooperative Institute for Research in the Atmosphere, Fort Collins, CO 80523, USA
& Curtin University, School of Molecular and Life Sciences, Bentley, WA 6845, Australia

ARTICLE INFO ABSTRACT

Keywords: Polar-orbiting ocean color satellites such as Landsat-8, Suomi National Polar-orbiting Partnership (SNPP), and
Shallow water Sentinel-3 offer valuable image data for the derivation of water bathymetry in optically shallow environments.
Bathymetry Because of the multi-spectral limitation, however, it is challenging to derive bathymetry over global shallow

Spectral optimization

! waters without reliable mechanistic algorithms. In this contribution, we present and test a physics-based algo-
Remote sensing reflectance

Temporal variation rithm for improved retrieval of bathymetry with multi-spectral sensors. The algorithm leverages the temporal
Landsat-8 variation of water-column optical properties in two satellite measurements. By incorporating two remote sensing
SNPP reflectance spectra in an optimization procedure, it enhances the spectral constraining condition for the opti-
mization, thus leading to improved retrieval accuracy. This scheme is evaluated using synthetic multi-spectral
data. It is shown that the new approach can provide accurate estimation of water depths over 0-30 m range with
three types of benthic substrates (corals, seagrass, and sand) and for a wide range of water column optical
properties. Based on the degree of improvement, Landsat-8 appears to be benefited the most, followed by SNPP,
and then Sentinel-3. The application of the new approach is demonstrated with satellite images over shallow
waters (0-30 m) dominated with coral reefs, seagrass, and sand, respectively. This proof-of-concept study
confirms the promise of multi-spectral satellite sensors for accurate water depth retrieval by accounting for the
temporal characteristics in multiple measurements, suggesting a path forward for the derivation of bathymetry
from the existing satellites over global shallow waters.

Sentinel-3

1. Introduction

Shallow water bathymetry is a basic geophysical parameter of
coastal environments. Accurate determination of bathymetry is pivotal
for coastal utilization, including navigation, tourism, resource man-
agement, and engineering. It is also important for many ecosystem-re-
lated studies, such as benthic diversity and class identification, carbon
cycling, and water quality. For almost 50 years, the derivation of
shallow water bathymetry characteristic of various spatial resolutions
has been a hot spot for the ocean remote sensing community.

Advanced methods exist for measuring the bathymetry in shallow
environments. Active sensing instruments, such as multi-beam sonar
and LiDAR, are widely used for shallow water exploration. Provided

necessary support, they allow for accurate bathymetric retrieval over
targeted areas (Goodman et al., 2013; McIntyre et al., 2006; Tuell et al.,
2005; Wang and Philpot, 2007). Satellite ocean color remote sensing is
a passive yet powerful alternative for deriving depth. In optically
shallow waters, where the contribution of bottom reflection is non-
negligible, the emerging light spectra carry important information on
the water depth, bottom albedo, and water column inherent optical
properties (IOPs) (Lyzenga, 1978). As such, the remote sensing re-
flectance (R,s(A)) has long been utilized to derive bathymetry maps over
optically shallow environments (Brando et al., 2009; Hedley et al.,
2016; Klonowski et al., 2007; Kutser et al., 2020; Lee et al., 1999).
There are two main categories of algorithms available for satellite
remote sensing of shallow water: empirical approaches and physics-
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based approaches. The empirical approaches are established upon the
statistical relationships between known depth data and R,(A) mea-
surements at one or several bands (e.g., Stumpf et al., 2003). They are
relatively straightforward to implement with either multi-spectral or
hyper-spectral satellite images (Caballero and Stumpf, 2019; Liu et al.,
2019; Mclntyre et al., 2006; Pacheco et al., 2015). In view of the var-
iation of benthic substrates and water IOPs in shallow environments,
empirical approaches face hurdles towards global application. Their
performance is often dependent on the similarity between data used for
algorithm development and those for applications (Dekker et al., 2011).
Physics-based or semi-analytical approaches refer to those formulated
out of radiative transfer theory (e.g., Lee et al., 1999; Lyzenga et al.,
2006; Philpot, 1989). In principle, this type of approach does not need
in situ data for model tuning and thus has the potential to be employed
for global waters. A caveat is that the shallow water radiative transfer
equation is complex to solve, more so than deep waters. According to
earlier studies (Lee et al., 1998; Lee et al., 1999), the shallow water
properties can be well determined from hyper-spectral R,;(A) data with
a spectral optimization algorithm (SOA). The SOA proves to be an ef-
fective procedure in estimating the water depth and has been ex-
tensively evaluated and continuously refined (Brando et al., 2009;
Dekker et al., 2011; Fearns et al., 2011; Giardino et al., 2012; Goodman
et al., 2008; Klonowski et al., 2007). The SOA, however, is susceptible
to an increase of uncertainty when the band numbers available to the
R,s(A) data are significantly reduced, as is the case with multi-spectral
sensors (Lee and Carder, 2002; Werdell and Roesler, 2003).

The current polar-orbiting ocean color satellites are generally con-
sidered multi-spectral sensors. A non-exhaustive list of multi-spectral
satellites includes the fine-spatial resolution (typically less than a few
meters) satellites such as WorldView-2 (five visible bands) and
RapidEye (three visible bands), the fine-moderate-spatial resolution
(~10-30 m) satellites such as Landsat-8 and Sentinel-2 (four visible
bands), and the moderate-spatial resolution (~300-1000 m) satellites
such as Aqua (seven visible bands) and Sentinel-3 (ten visible bands).
The multi-spectral satellite R,(A) data of different spatial resolutions
are increasingly tested for the water depth retrieval in many shallow
regions (Caballero and Stumpf, 2019; Cahalane et al., 2019; Li et al.,
2019; Stumpf et al., 2003). Despite the ever-increasing amounts of
ocean color images, the small number of bands available to the R,(A)
data has largely limited the applicability of existing physics-based al-
gorithms such as the SOA for shallow water depth retrieval (Barnes
et al., 2018; Lee et al., 2010). A gap clearly exists between the need for
shallow water bathymetry of fine- to moderate-spatial resolution and
the available multi-spectral algorithms useful for the water depth re-
trieval over global coastal areas.

In this study, we develop and test an optimization approach for
improved derivation of bathymetry from multi-spectral ocean color
data over global shallow waters. This new approach takes advantage of
the temporal variation in the satellite-derived R,(A) data. The as-
sumption made here is that the temporal variation in two satellite R,5(A)
images over a short enough time period is caused by variation in the
I0Ps, while the bottom albedo (magnitude and shape) and depth re-
main the same. As such, our optimization algorithm requires two sa-
tellite multi-spectral R,(A) spectra acquired at the same location as
input. Distinct from earlier studies, the two R,4(A) spectra are processed
simultaneously in the optimization procedure.

Our analysis is focused on three satellite ocean color sensors. With
more information given in Table 1, the Landsat-8 Operational Land
Imagers (L8/OLI) has four visible bands, including a blue band at
443 nm that was nonexistent on its predecessors (Loveland and Irons,
2016). The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard
SNPP has six visible bands, including one aggregated from an imaging
band at 638 nm (Wang and Jiang, 2018). The Sentinel-3A Ocean and
Land Color Instrument (S3A/OLCI) has ten visible bands, with a purple
band at 400 nm. The model performance is assessed with both syn-
thesized and satellite R, (A) data. Our results show that the new
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Table 1

Instrument specifications, observation time, data access and processing for
three ocean color satellites (Landsat-8, SNPP, and Sentinel-3A). The online
NOAA tidal data (https://tidesandcurrents.noaa.gov) were used to estimate the
tidal difference for the two collocated satellite images. The tidal data for images
of Hawaii, Florida Keys, and the Bahamas shallow waters were specific to the
local harbor data of Lahaina (20°53’ N, 156°41’ W), Key Largo (25°17.4’ N,
80°20.3” W), and North Cat Cay (25°33’ N, 79°17” W), respectively.

Landsat-8 SNPP Sentinel-3A
Instrument OLI VIIRS OLCI
Spatial resolution (m) 30 750 300
Visible bands (nm) 443,482,561, 410, 443, 400, 413, 443, 490,
655 486, 551, 510, 560, 620, 665,
638, 671 674, 681"
Data access USGS NOAA NOAA
Processing software L2GEN MSL12 MSL12
Atmospheric NIR-SWIR NIR-SWIR NIR
correction
Images at t; and ¢, 2017-03-15, - -
(Hawaii) 063/048
2017-03-31,
063/048
Images at t; and t, - - 2018-01-13 15:33 UTC
(Florida Keys) 2017-12-29 15:21 UTC
Images at t; and t, - 2019-01-30 2019-01-30 15:29 UTC
(Bahamas) 18:46 UTC 2019-02-04 14:59 UTC
2019-02-04
18:53 UTC
Tide difference < 0.3 < 0.3 < 0.3
at t; and t; (m)
Tide levels < 0.3 < 0.3 < 0.5

at t; and t, (m)

@ The 681 nm band is excluded from the current analysis.

algorithm can estimate the water depth with improved accuracy, a re-
sult of leveraging the temporal variation of the R(A) data over the
same shallow water pixels.

2. Two-spectrum optimization algorithm

The two-spectrum optimization algorithm, or 2-SOA, works with
two multi-spectral remote sensing reflectance spectra, R.°P(\, ;) and
R,°»(\, t,), observed at the same location but at two different times, t;
and t,, respectively. The difference between t; and t, is short enough
that the bottom albedo and water depth (after tidal correction) are
assumed unchanged. The 2-SOA algorithm first models each of the two
reflectances, R,/"*%(\, t;) and R,;™°%(\, t,), as a function of water depth,
bottom albedo, and water IOPs. It then evokes spectral optimization to
reach an optimal solution for the water depth by searching for the
minimum between the two observed and two modeled reflectance
spectra. The workflow of the 2-SOA approach for shallow water ocean
color inversion of R,**(\,t;) and R,°(A,t,) is illustrated in Fig. 1. In
the following two subsections, we describe the optical modeling process
and spectral optimization, respectively.

2.1. Shallow water optical modeling

We adopt the forward optical models of the hyper-spectral optimi-
zation processing exemplar (HOPE) (Lee et al., 1998; Lee et al., 1999) to
describe the water-column inherent optical properties and bottom al-
bedo. First, the phytoplankton absorption coefficient (a,x(A)) is mod-
eled by an empirical function (Lee et al., 1998)

apn(A) = [a0(D) + a1 (1) Inapy, (443)] apy (443) @

where ap(A) and a;(A) are wavelength-specific constants initially
given from 400 nm to 800 nm for every 10 nm. In this analysis, ag(A)
and a;(A) are interpolated onto the specific bands of interests. The light
absorption of colored dissolved organic matter (CDOM) and detritus
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Fig. 1. Schematic workflow of the two-spectrum
optimization approach (2-SOA) for semi-analytically
deriving water depths from two multi-spectral sa-
tellite images. Definitions of all quantities:
R,*"—satellite-observed remote sensing reflectance;
R"™?—modeled remote sensing reflectance;
P-phytoplankton absorption coefficient at ~443 nm;
G-CDM absorption coefficient at ~443 nm;
X-particle backscattering coefficient at ~443 nm;
B-normalized bottom albedo at ~550 nm; H-water
depth; err-least square residual error. The subscripts
1 and 2 refer to the quantities observed, modeled, or
derived from two collocated images accessed at ob-
servation time t; and t,, respectively.

R (A1)

[Pl> Gl: Xl> B>H] ':‘J>R;:‘:Od (ﬂ"tl)
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l
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Spectral optimization

[ (R ut) - R (A)) + 2 (R (2,8~ R

)]

err =

2R (Gt)+ R (A1)
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Pl’ Gl> X1> P2a G2> ‘Xi> B: H

(collectively, CDM) are treated together due to the similarity of their
spectral behavior, denoted as ag,(A), with
agg (A) = agy (443) exp[—Sy X (A — 443)] @)

where S, refers to the spectral slope for a4,(A) in the visible domain
and is assumed to be a constant equal to 0.015 nm~?, following Lee

et al. (1998). The particle backscattering coefficient (by,(A)) is char-
acterized by a power function,

bop () = byp (443)[%]" o

where the parameter 7 is estimated from the spectral ratio of R,(A)
at 443 nm and ~ 550 nm bands, following Lee et al. (2002). Thus, the
total absorption and backscattering coefficients can be expressed as

a(d) = app(A) + agg (1) + a,, (1) 6]

by (A1) = by, (1) + by, (1) 5)

where a,(A) and by, (A) refer to the absorption and backscattering
coefficients of pure seawater, respectively, and are determined as
constants following Lee et al. (2015) and Zhang et al. (2009), respec-
tively. The bottom spectrum, p(A), is quantified by a normalized bottom
albedo spectrum at ~550 nm, p,(A), and a scaling factor, B,
p) = B-p,(1) (6)

The p,(A) spectrum is assumed to follow the shape of sandy sub-
strate and adopted from Lee et al. (1999). Fig. 2 illustrates the spectral
feature for this bottom reflectance spectrum.

With the above-modeled spectral optical properties, the remote
sensing reflectance just below the water surface (r,5(A)) is approximated
following the shallow water model of Lee et al. (1999), as

3 I | | I

—— Coral (synthetic data)

—— Seagrass (synthetic data)
—e— Sand (synthetic data)
Bottom spectrum for 2-SOA

0
400 450 500 550 600

Wavelength (nm)

650 700

Fig. 2. Normalized bottom albedo spectra (p,(A)) for coral, seagrass, and sand
substrates used for the synthesis of R,(A) spectra, which were derived from
Hochberg et al. (2003). The black curve indicates the bottom albedo spectrum
adopted by 2-SOA, which is available from Lee et al. (1999).

hs(1) = rfslp(/l)-{l - exp[—(

&exp[—( L
T

cos 6,

1, D+ Dl'”(’l))o‘s).k(/l).H]}+

cos 6, cos 6,

Dy(1 + D{-um))“),k (A).H]
cos 6,

)

As shown in Eq. (7), ris(A) is the sum of the contribution from the
water column and the contribution from the bottom reflection.
Specifically, r®(\) refers to the reflectance just below the water sur-
face in optically deep waters; the parameter 6, is the solar-zenith angle
and 0, is the subsurface solar-zenith angle; k(A) is an IOP, with k
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(A) = a(A) + by(A); H is the water depth to be solved; and the values of
Dy, D1, Do, andD; are adopted from Lee et al. (1999),

Dy =1.03,D; =24
D{=1.04,D/ =54 ®

According to Monte Carlo simulations (Gordon et al., 1988), L)
can be estimated by a quadratic function of u(A), as

r? ) = gu) + g u@P ©)]

where u()) is the ratio of the backscattering to absorption coeffi-
cients, with u(A) = by(A)/[a(L) + by(A)], and two model constants g,
and g; were adopted from Lee et al. (2002), with g = 0.089 sr™ ! and
g = 0.125 sr~'. We note that the formulation of Eq. (7) provides an
explicit description of various contributions to r,5(A) omitting inelastic
scattering (Raman scattering and fluorescence) (e.g. Lee and Carder,
2004), which does not make a strong contribution to optically shallow
waters.

Lastly, r,5(A) is propagated through the water surface to obtain a R
(A) spectrum (Lee et al., 1999),

0.5%5 (1)

Rs @) = 1 — 1.5r,(1) (10)

Note that an updated version of Eq. (10) is also available (Lee et al.,
2002). The present analysis still uses Eq. (10) to ensure consistency and
comparability with earlier studies. Up to this step, each R,,(A) spectrum
can be characterized by five unknowns: a,,(443), a,(443), by,(443), B
and H, i.e.,

R(1) = Fun[P,G,X,B,H] an

where the parameters P, G, and X refer to a,,(443), agg(443), and by,
(443), respectively, for simplicity.

2.2. Spectral optimization

The standard HOPE algorithm solves Eq. (11) through a cost func-
tion which quantifies the least square residual error (err) between R,mo4
() and R,"(M),

_ [T R - RGP
TR () a2

Such a cost function is commonly found in ocean color inversions
(Dekker et al., 2011; Lee et al., 1999; Roesler and Perry, 1995; Werdell
and Roesler, 2003). For convenience, this optimization procedure using
one input spectrum will be hereafter called one-spectrum optimization
approach, or 1-SOA for short.

The 2-SOA approach considers two independent input spectra ob-
tained at different times. There is no strict requirement for the scale of
the time difference. Nevertheless, these two spectra should be measured
within a reasonably short period of time, which can be in the order of
days or weeks, depending on the availability of utilizable image data. It
is important to emphasize that the corresponding bottom albedo and
water depth at two observation times should remain (approximately)
unchanged, while the water inherent optical properties, including P, G,
and X in Eq. (11), can vary. This requirement can be met under most
conceivable situations, as abrupt changes of the bottom albedo and
water depth are likely caused by extreme events such as hurricanes. The
tides can also alter the water levels, which can be corrected (Garcia
et al., 2014a). The impact of tidal levels is further discussed later in
Section 6.

With two input spectra (R,>>(A,t;) and R,°*(\,t,)), two new re-
mote sensing reflectance spectra can be modeled in the manner ana-
logous to Eq. (11), as

err

R™(A,4) = Fun[P,, G1,X;, B, H]
RY(A,1,) = Fun[P,, Gy, X, B, H] 13)
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Table 2

Spectral constraints and initial values used by the spectral optimization pro-
cedure of the two-spectrum optimization approach (2-SOA). The initial values
for P, G, and X are generally adopted from Lee et al. (1999). Note that the
wavelengths used for the initial values are specific to the ocean color sensors.
When the 550 nm or 670 nm band is not available, an alternative band closest
to 550 or 670 nm bands will be used.

Lower Upper Initial values

boundary  boundary
Py (m™Y)  0.005 0.35 0.072 X [R™(443,t;)/R,**(550, ;)] ~ 1
G; (m™ %)  0.001 0.6 0.072 X [R,**(443,t,)/R,**(550,t,)] 2
X, (m~Y)  0.0001 0.08 30 X @,(670) X R**(670,t;)
P, (m~Y)  0.005 0.35 0.072 X [Ry**(443, £,)/R,"*(550, )] 62
G, (m™")  0.001 0.6 0.072 X [R;**(443,t,)/R,**(550, t,)] ~ 62
X, m~Y)  0.0001 0.08 30 X @,(670) X R**(670, ;)
B 0.001 0.8 0.5
H (m) 0.1 30.5 5

Table 3

Values of water column inherent optical properties (P, G, X, 7, and Sg,), water
depth (H), solar-zenith angle (6,), and bottom albedo (B) used for modeling the
remote sensing reflectance data. Three bottom types (coral, seagrass, and sand)
are considered.

Quantities Values (intervals) Number of levels
P 0.01-0.19 (0.03) 7
G 0.01-0.19 (0.03) 7
X 0.001-0.019 (0.004) 7
H 0.5-29.5 (1.0) 30
7 —-0.5-2.5 (0.5) 7
Sag 0.015 1
0, 30° 1
B: coral 0.005, 0.05, 0.1 3
B: seagrass 0.01, 0.035, 0.08 3
B: sand 0.1, 0.25, 0.6 3

Note that, in Eq. (13), each modeled reflectance spectrum is char-
acteristic of a unique set of P, G, and X parameters (denoted with
subscripts “1” and “2”, respectively), but of common bottom albedo and
water depth. As a result, Eq. (13) has a total of eight unknowns: Py, Gy,
X3, Py, Gy, X5, B, and H. To solve Eq. (13) in an optimization procedure,
we quantify the difference between the two sets of modeled- and
measured-spectra with the cost function given below,

err
_ [T R G 0) = R (i)Y + B R (i b) — R (i, 1))’
YR (i) + LR (i)

1/2

14)

We use the MATLAB built-in optimization solver called fmincon to
search for the minimum for Eq. (14). This routine employs the interior-
point algorithm and allows the bound constraints to be applied to each
variable. The optimization options include the maximum iterations of
2000 and tolerance of 10~ °. The constraints and initial values for the
optimization procedure are given in Table 2. We note that the cost
function of Eq. (14) and the standard function of Eq. (12) are essentially
the same in the manner that they quantify the minimum. The difference
rests on the innovative involvement of two collocated input R,(})
spectra in the optimization of Eq. (14).

3. Evaluation data
3.1. Synthetic multi-spectral R,s(A) data
The forward models in Egs. (1)—(10) are used to synthesize a hyper-

spectral data set (400-700 nm, for every five nanometers) over shallow
waters. The synthetic data mimic real-world optical properties without
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Table 4
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Retrieval accuracy of water depth (H) derived from the synthetic data with three ocean color satellites (L8/0OLI, SNPP/VIIRS, and S3A/OLCI). The results from both
the two-spectrum optimization approach (2-SOA) and the standard approach (1-SOA) are provided for comparison of their performance.

L8/0LIL SNPP/VIIRS S3A/0OLCI
Coral Seagrass Sand Coral Seagrass Sand Coral Seagrass Sand
[g] 42% 43% 21% 22% 31% 13% 22% 26% 10%
1-SOA T 14% 13% 7% 6% 18% 2% 5% 14% 3%
RMSD*? 9.3 9.5 6.0 8.8 9.1 4.6 8.3 8.5 4.1
[g] 26% 28% 15% 14% 19% 11% 14% 16% 10%
2-SOA T 1% 1% 3% 4% 9% 0% 1% 5% 2%
RMSD 8.3 8.7 5.2 7.7 8.2 4.0 7.2 7.8 3.9
2 RMSD is represented in units of meters.
Coral Coral Coral
300 “ T T T T T 40 T T T T ] 40 T T - T T T
(A) L8/OLI - #(B) SNPP/VIIRS/ - # (C) S3A/OLCI

200

100

é 0 L 0 1 1 1 | il 0 1 1 1 1 1
o 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
-
8 300 : ISeaglrassI 80 ISeag.?rassI 4 50 . ISeaglrassI .
é (D) L8/OLI an b (E) SNPP/VIIRS] 40 b ~ (F)S3A/OLCI ]
a 30 F .
§ 40 sk
& 100 1 -
£ 20 10 F
=
8 O 1 1 1 bt 0 O 1 i 1 1 1
< 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
=
&
.—q‘: 1 OO T T Salrld T T 20 T T Salll(i T T B | 20 T T Salll(i T T
= 80| (G) L8/OLI sk (H)SNPPVIRS Y ¢ (1) S3A/OLCI 4
10
5 -
0 1 1 1 1 1 ] 0 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Depth (m) Depth (m) Depth (m)

Fig. 3. Dependence of the absolute percentage errors (|€]) for the water depth retrieval on the range of known water depths. The two-spectrum optimization
approach (2-SOA) and the standard approach (1-SOA) are compared in these illustrations. Each subplot represents a particular bottom type and a specific ocean color
sensor combination. Each row indicates the results from different satellites (L8/OLI, SNPP/VIIRS, and S3A/OLCI), while each column refers to the results for different

bottom types (coral, seagrass, and sand).

associated measurement and human errors, and hence provide a
straightforward measure to evaluate the algorithm performance (e.g.,
Barnes et al., 2018; Carder et al., 2005; Garcia et al., 2018; Manessa
et al.,, 2018). The data used here represent a wide range of water
depths, IOP combinations, and multiple benthic classes (Table 3).
Briefly, the water depths were varied from 0.5 m to 29.5 m with a step
of one meter, resulting in 30 depth levels to be assessed. For IOPs, both
a,,(443) and a4,(443) were varied from 0.01 to 0.19 m ™! with a step of
0.03 m~!. According to analyses of field measurements, the CDM
spectral slopes in “clear” waters vary over a relatively narrow range
(within = 10% of a median value) across various geomorphic zones
(Russell et al., 2019). Therefore, the present study assumed a constant
spectral slope with Sg; = 0.015nm ™~ !. Particle backscattering, by,(443),
was varied between 0.001 m~! and 0.019 m~! with an increment of
0.004 m~ . The spectral slope for by,(A) was varied from —0.5 to 2.5

with a step of 0.5. The solar-zenith angle was assumed to be 6, = 30°.
There are many hyper-spectral bottom spectra measured over various
benthic substrates (Hochberg et al., 2003). The inclusion of every
spectra in the present simulation would require significant computing
capability. Instead, we obtained the median spectra for brown coral,
seagrass, and sand from Hochberg et al. (2003) to represent the bottom
reflectance spectra for three substrates. As shown in Fig. 2, the spectral
shape of the sandy substrate is flatter and relatively featureless, while
the seagrass spectrum has a broad peak between 500 and 650 nm and
the coral spectrum contains three peaks with a local maximum in the
yellow and red domain. Three levels of bottom albedo B were con-
sidered for each benthic substrate, with the largest B values assigned to
the sandy substrate (Table 3). Finally, for each benthic substrate, a total
of 216,090 combinations of water depths (N = 30), bottom albedo
(N = 3), and IOPs (N = 2401) were constructed. We acknowledge that
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Fig. 4. Dependence of the accuracy (specifically, absolute percentage error) of the water depth retrieval on the contribution of bottom reflection. The bottom ratio, or
the ratio of bottom reflection contributed to the remote sensing reflectance, is calculated and used as the reference in the x-axis. Each subplot represents a particular
bottom type and a specific ocean color sensor combination. Each row indicates the results from different satellites (L8/OLI, SNPP/VIIRS, and S3A/OLCI), while each

column refers to the results for different substrates (coral, seagrass, and sand).

realistic benthic spectra are more likely to be mixtures of different
species rather than a “pure” type, especially considering the spatial
resolution of L8/0OLI, SNPP/VIIRS, and S3A/OLCI. Simulation of such
mixtures is however beyond the focus of current study.

For each level of simulated water depths and substrates, we ran-
domly chose 400 simulated R,s(A) spectra at each depth level and for
each bottom albedo to form the first set of “collocated” spectra, R,
(A, t1). Repeating this process led to the second data set, namely, R,
(A,t;). The resulting collocated R,°*(A,t;) and R.°*(A,t;) data re-
present 36,000 pairs of simulations (400 X 30H X 3 B) with respect to
each bottom type. Further, the paired R,s(\) data were spectrally sub-
sampled according to the band settings of L8/0OLI, SNPP/VIIRS, and
S3A/0LCI. For L8/0LI, we adopted four visible bands of 443, 482, 565,
and 665 nm for our analysis. For SNPP/VIIRS, six visible bands of 410,
443, 486, 551, 638, and 671 nm were used. For S3A/OLCI, nine visible
bands of 400, 413, 443, 490, 510, 560, 620, 665, and 674 nm were
considered. OLCI also has a red band centered at 681 nm, which is
omitted in our scheme, given that R,;(681) is subject to the chlorophyll-
a fluorescence effect (Gordon, 1979) and the spectral optical models
discussed in Section 2.1 do not account for the fluorescence effect.

3.2. Satellite images

We acquired two L8/OLI Level-1 images from the USGS Earth
Explorer (Table 1). The observation times for the two images are
16 days apart, which is the revisit period of Landsat-8. According to the
NOAA tidal data (https://tidesandcurrents.noaa.gov), both images
were captured during the low-tide periods, with the estimated tidal

difference within 0.33 m. The images were processed to Level-2 pro-
ducts with the SeaWiFS Data Analysis System (SeaDAS) (Franz et al.,
2015). SeaDAS implements the atmospheric correction developed out
of the work of Gordon and Wang (1994). In the analysis, the near-in-
frared (NIR) and shortwave infrared (SWIR) band combination (865
and 2201 nm) was adopted for the determination of aerosol types,
which has been validated for shallow water applications (Wei et al.,
2018). An iterative procedure was employed to further correct for the
estimated aerosol contributions at the NIR bands (Bailey et al., 2010).

The S3A/OLCI and SNPP/VIIRS images were obtained from the
NOAA ocean color data archive (http://coastwatch.noaa.gov)
(Table 1). In the Florida Keys, the two Sentinel-3A images were cap-
tured around 15:30 UTC, with the estimated tide levels at ~0.3 m; the
tidal difference between the two images is very small. In the Bahamas,
the water level differences between two observation times for two
collated images were < 0.3 m. We processed the Level-1 images with
the Multi-Sensor Level-1 to Level-2 (MSL12) procedure (Wang et al.,
2013). MSL12 is based on the NASA SeaDAS 6.4 with modifications and
improvements. It can switch among the NIR-, SWIR-, and NIR-SWIR-
based atmospheric correction algorithms for open ocean, coastal, and
inland waters applications (Wang, 2007; Wang and Shi, 2007; Wang
et al., 2009). For SNPP/VIIRS images, a combination of NIR-SWIR
bands was used in the current analysis to determine the aerosol types
from an aerosol look-up table generated from 12 aerosol models (Wang,
2007). For S3A/0OLCI, two NIR bands (779 nm and 865 nm) were
chosen for the determination of aerosol types (Gordon and Wang,
1994). The image processing was accomplished with the ocean color
data processing system (OCDAPS) at the NOAA Center for Satellite
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Applications and Research (STAR).

In addition to the above specifics, we kept the default model settings
for image processing. The residual glint correction was performed with
the standard approach (Wang and Bailey, 2001). The standard Level-2
quality flags, including cloud, high sunglint, straylight, high sensor- and
solar-zenith angles, etc., were applied (Mikelsons et al., 2020). Finally,
the processed Level-2 images were re-projected onto the Geographic
Lat/Lon (WGS 84) Coordinate Reference System (CRS), following the
equidistant cylindrical projection. The re-projected images were then
collocated using the nearest neighbor resampling procedure.

3.3. Metrics for performance evaluation

To evaluate the algorithm performance in estimating water depth,
we calculated the bias () as

£ = median{(M — T)/T} x 100% (15)

where M and T refer to the estimated and known values, respec-
tively. Correspondingly, we derived the absolute percentage difference

([2]) as,
|l = median{|(M — T)/TI} x 100% (16)

The root-mean-square difference (RMSD) was also computed to
assess the model uncertainty, with

RMSD = /median{(M — T)* a7

4. Assessment results of the synthetic data

Implementation of the 2-SOA approach with the synthetic data al-
lows insight into the algorithm performance. Along with 2-SOA, we also
present the results from the 1-SOA algorithm for which only one R,(A)
spectrum was used. Such comparisons highlight the performance of 2-
SOA and the degree of improvement relative to the standard optimi-
zation approach.

First, the overall statistical results over the full range of depths
(0-30 m) are given in Table 4. It is evident that the 2-SOA approach can
estimate water depths with substantially smaller errors (|g|, €, and
RMSD) than the 1-SOA approach where one multi-spectral R,(A)
spectrum is used as the input. Among three simulated satellite sensors,
L8/0LI has benefited to the largest degree from the 2-SOA approach,
mostly because it has the fewest number of wavelengths available for
spectral optimization. In contrast, the water depth retrievals for S3A/
OLCI have experienced the smallest degree of improvement, because
the OLCI has the largest number of bands. The degree of improvement
for SNPP/VIIRS remains relatively moderate among three satellites.

Distinctive performance of the 2-SOA algorithm is also revealed in
accordance with the benthic substrates, after comparing the statistical
results in Table 4. This is expected as 2-SOA assumed a fixed spectrum
for the bottom albedo, which is different from the simulated benthic
reflectance spectra (recall Fig. 2). For the three benthic substrates, the
2-SOA approach yielded the highest degree of improvement for depth
retrievals in coral reefs and seagrass environments. The retrievals for
sandy environments have also benefited to a relatively smaller extent
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from the use of two R,5(A) spectra for optimization. This can partially be
explained by the very different amplitudes of the bottom albedos.
Specifically, sand is usually much brighter and spectrally flatter than
coral and seagrass substrates (recall Fig. 2 and Table 3) (also see
Hochberg et al., 2003). As a result, the subsequent water depth re-
trievals over sandy substrates tend to be more accurate than the other
two bottom types.

We further examined the model performance with respect to its
dependence on water depths under investigation. In Fig. 3, the absolute
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percentage errors for the model-estimated depths are plotted as a
function of known water depths. For SNPP/VIIRS and S3A/OLCI, the
largest errors in retrieved depths are always found in waters where the
bottom is shallower than five meters, partially as a result of the small
values of water depths themselves. The model errors are generally
constrained within ~20% if the waters are deeper than five meters. For
L8/0LI, the errors for estimated depths generally increase with the
decrease of water depths from about 10 m. For water depths less than
three meters, the errors can be in the order of hundreds of percent,
particularly over simulated coral and seagrass substrates (Fig. 3a and
Fig. 3d). Besides the small values of water depths themselves, the
markedly large errors in waters of less than five meters (Fig. 3a, Fig. 3d,
and Fig. 3g) are likely caused by the fact that L8/0OLI does not have an
additional deep blue band around 412 nm. In waters of 5-30 m, the
algorithm appears to perform well with L8/0LI, with acceptably small
errors (~20%-30%).

The comparisons in Fig. 3 illustrate the performance of the 2-SOA
algorithm in improving the water depth retrieval over a wide range of
depths. With L8/0LI data, the performance of 2-SOA exceeds 1-SOA at
almost every level of depth discussed in this context. The most no-
ticeable improvement for L8/0LI lies in the waters of ~0.5-15 m deep.
The degree of improvement, or the absolute difference of the model
errors, can be greater than 100% (Fig. 3d and Fig. 3g). For SNPP/VIIRS
and S3A/OLCI, the 2-SOA approach outperforms 1-SOA over the depth
range of 5-20 m. In coral and seagrass substrates, the degree of im-
provement is about 20% (Fig. 3b-Fig. 3c, and Fig. 3e-Fig. 3f); it re-
mains relatively small for sandy bottoms (Fig. 3h-Fig. 3i).

Since the synthetic data are composed of a wide range of water
depths and IOPs, certain combinations of a(A), by(A), and H may favor
an extremely large water-column attenuating component in Eq. (7),
leading to negligible contributions from bottom reflectance. We calcu-
lated the ratio of the bottom contribution to the total remote sensing
reflectance for each simulation, following % = rrsb()\,,ef)/rrs
(Arep) X 100%, where r,sb(k,ef) is the bottom contribution term in Eq. (7)
at a reference wavelength (A, = 561, 551, and 560 nm for L8/OLI,
SNPP/VIIRS, and S3A/OLCI, respectively). In Fig. 4, the absolute per-
centage errors for model-estimated depths are plotted against ten levels
of bottom contribution ratios from 0-10% to 90%-100%. As 2-SOA
used two synthetic R,5(A) spectra, we chose the maximum r,st\.,ef) va-
lues as the representative bottom ratio for the two spectra. It can be
found that the errors of the derived depths vary with the bottom ratio in
a pattern approximately opposite to the model error-depth relationship
demonstrated in Fig. 3. This is expected and, to a large extent, related to
the fact that the bottom reflection tends to contribute more to R,s(A) in
shallower environments, in which environments, however, accurate
estimation of water depths from 2-SOA (and 1-SOA) is usually more
challenging.

5. Assessment results of satellite ocean color images
5.1. Hawadiian coral reefs

The Olowalu Reef (20.79°N-20.81°N, 156.63°'W-156.59°W) at the
southwest coast of Maui, Hawaii (Fig. 5b and Fig. 5c) is selected for
algorithm evaluation. Located on the leeward side of northeasterly
winds and large swells, it represents the largest fringing reef in the main
Hawaiian Islands. This study area covers about three-square kilometers
and thus is more suitable for the L8/0OLI footprint than the other two
sensors. In Fig. 6a, the bathymetry map (0-30 m) for this unique reef
system is derived from two L8/0OLI images using the 2-SOA approach.
For comparison, we obtained in situ water depth data from the Scan-
ning Hydrographic Operational Airborne LiDAR survey (SHOALS)
(http://www.soest.hawaii.edu/coasts/data/maui/shoals.html). In
Fig. 6b, the LiDAR data are spatially averaged over pixels within 30 m
from the L8/0LI coordinates. First, the satellite- and LiDAR-derived
bathymetry maps exhibit almost identical spatial distribution pattern
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Fig. 7. Comparison of the water depth retrievals from the L8/0OLI images with the two-spectrum optimization approach (2-SOA) and the LiDAR sensing technique
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linear fit between the water depths derived from L8/OLI and LiDAR.

over the range of 0-30 m, which decreases from the coastline towards
offshore waters. Fig. 6¢ compares the water depths from L8 and LiDAR
in a scatterplot, superimposed with the data density (in colors and
contours). Quantitatively, the L8/0OLI and LiDAR bathymetry data are
consistent with each other except for differences ([g| = 27%, T = 21%,
RMSD = 5.3 m, and N = 4036). The majority of the data points are
distributed closely to the 1:1 line, with a Type-II linear regression
equation of Y = 0.96 x + 3.21, and R? = 0.70. To further validate the
L8-derived depths, we extracted the water depth data along the long-
itudinal lines of 36°37'W, 36°36.5'W, 36°36’W, and 36°35.5'W, re-
spectively. In Fig. 7, the similarity of the water depth profiles from L8
and LiDAR is clearly illustrated. Each pair of depth profiles are found
with large coefficients of correlation (R? = 0.68-0.90), close-to-unity
linear regression coefficients, and acceptably small differences
(Jg] = 20%-36%, € = —7.6%-35%, RMSD = 3.1-6.4 m).

The outliers and biases in the L8-generated water depths in Fig. 6
and Fig. 7 are worth further discussion. In waters of less than five
meters, tens of L8-generated depths are found overestimated. These
outliers are in part due to the algorithm itself as its performance with
four Landsat-8 bands can be somewhat impeded when the water depths
are shallow than five meters (e.g., Fig. 3). Besides, dozens of L8-derived
data points in relatively deep environments (> 10 m) are present
around five meters, apparently underestimated in comparison to the
LiDAR map. These underestimated data points coincidently aligned
themselves with the initial guess for water depth during spectral opti-
mization, suggesting a possible origin. Despite the deviations from the
LiDAR data, these outliers only account for a relatively small percen-
tage (< 2%) of the data points, and hence exert limited impact on the
consistency between two sets of depth data. It is important to empha-
size that the errors of derived depths could be partially due to the
complexity of the substrates and uncertainties in the satellite data. The

heterogeneous substrates, including the presence of sand channels, in-
dependent of coral colonies, or variable morphologies, and the differ-
ence in the instruments' footprints, can contribute to the observed un-
certainty. In addition, the tide levels (< 0.3 m) at the observation times
of L8 images may be partially responsible for the observed positive
biases in Fig. 6 and Fig. 7. Lastly, the disparity between the L8/0OLI and
LiDAR water depth derivations is, to a certain degree, attributable to
the propagation of the uncertainty of the satellite R (A) data (e.g.,
Garcia et al., 2014b; Goodman et al., 2008).

5.2. Florida keys seagrass environments

The second shallow environment is located in the east of the Florida
Keys National Marine Sanctuary (Fig. 5d). It covers part of the Florida
Bay and the Hawk Channel in the Reef Tract (24.94°N-25.05°N,
80.33°W-80.632°W). This shallow water is characteristic of extensive
seagrass beds as well as some typical coral barrier reefs. The study area
is large enough (the surface area is about 3.5 X 6 km?) to derive and
evaluate the water depths from S3A/OLCI images. Note that LiDAR
measurements are scarcely available in this region. Instead, the ras-
terized bathymetry map from the NOAA coastal relief model (CRM)
(NGDC, 2001) was acquired for the validation of retrieved water depth
from S3A/OLCI. Fig. 8a and Fig. 8b are the bathymetry maps (0-30 m)
derived from S3A/OLCI and CRM, respectively. The S3A- and CRM-
derived bathymetry maps are highly comparable to each other. With
the majority of the water depths less than ~10 m, the bathymetry in
this area gradually increases from the Florida Bay towards the barrier
reefs. It also appears that the two bathymetry maps do not sufficiently
differentiate land/water pixels in the Florida Bay (northwest to the land
shown in Fig. 5d), which can be corrected in the future with higher-
resolution land masks.
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Fig. 8. (a) Bathymetry map (in meters) for the seagrass environment of Florida
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(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The S3A-derived water depths are quantitatively compared with the
CRM data in Fig. 8c. To accommodate their different spatial resolutions
(~300 m vs. 90 m), the CRM data were averaged over a box of 3 x 3
pixels centered at the S3A/OLCI coordinates. As the scatterplot shows,
two sets of depth data agree with each other very well, with |g] = 16%,
€ = —3.5%, and RMSD = 2.5 m. There exist some data points showing
relatively large deviations from the 1:1 line. In the Florida Bay, for
instance, a dozen of satellite-derived water depth data are biased high.
Two main factors might explain the overestimation in this shallower
portion of waters. The first one is related to the possible contamination
of S3A/OLCI R,(A) data; within the S3A/OLCI footprint, narrow
sandbars, shoals, and small islands are mixed with surrounding waters,
partially impacting the R,(A) data and subsequent water depth

10
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retrievals. Second, it might be a result of the problematic CRM data
themselves. After all, the CRM data were generated by spatial inter-
polation based on many historical low-tide hydrographic data. The in-
stantaneous tide levels are low (< 0.3 m) (Table 1), the impact of which
on the comparison is expected to be small. In the relatively deeper
waters (> 10 m), the S3A data appear biased low relative to the CRM
data. This underestimation is likely related to the bottom heterogeneity
around the ~15-30 m isobaths, where the CRM data have undergone
spatial gridding, extrapolation, and other arbitrary operations, resulting
in possibly unrealistic data.

5.3. The Bahamas

The Bahamas Bank is a massive shallow body of water in the
southern Bahamas (22.5°N-25.5°N, 79.5°W-75.75°W) (Fig. 5e). The
vast shallow area (about 300 x 300 km?) is dominated by sandy sub-
strate, with seagrass distributed primarily along the perimeters of the
Great Bahamas Bank and the southern bank (Dierssen and Zimmerman,
2003). The extensive flats of the Bahamas are not currently included in
the NOAA CRM products. As an alternative, we extracted about 1200
water depth points from a digital navigation chart — Explorer Charts
near the Bahamas, for validation. Fig. 9a and Fig. 9¢ show the highly
comparable bathymetry maps obtained from the SNPP/VIIRS images
and the S3A/OLCI images, respectively. Note that these maps only show
the results at pixels for R,4(443)/R,s(486) < 1 and R,(~745) > 0.
Some pixels in the southeastern portion of the shallow area are masked
out due to clouds. In the vicinity of Andros Island (24.43°N, 77.95°W),
the water depths are largely confined within five meters. Relatively
deep waters (around 10 m) are generally found in the middle and
southern parts of the bank, similar to the presentation of Lee et al.
(2010). In Fig. 9b and Fig. 9d, the satellite-generated water depths are
compared with the depth data extracted from the digital navigation
chart. In general, satellite-derived water depths appear to be biased
high, with €] = ~40%. This can be largely explained by the fact that
the in situ water depth data represent the approximate level of the
mean low water springs (MLWS). The satellite-derived depths in our
analysis are not corrected for the tide differences either, which are less
than half meters at each satellite overpass (Table 1). Dozens of water
depths in the northwest edge of the bank are underestimated by sa-
tellite data, probably due to the bottom heterogeneity. These under-
estimated points render the linear regressions deviating to a large de-
gree from the 1:1 line.

Fig. 9e is a cross-comparison of the bathymetry data derived from
SNPP/VIIRS and S3A/OLCI. The S3A/OLCI depths are averaged over
3 X 3 pixels to compensate for the difference in two sensors' spatial
resolution. As expected, the two sets of water depth estimates are found
tightly distributed around the 1:1 line. The differences between two
data sets are negligibly small, with [g] = 9.3%, € = —7.3%, and
RMSD = 1.3 m. We note that the SNPP/VIIRS and S3A/OLCI images
were acquired on exactly the same two days, except that the overpass
time was slightly different, with SNPP/VIIRS in the early afternoon and
S3A/0LCI in the late morning (Table 1). This time discrepancy resulted
in different water levels due to the tides, which are, however, negligibly
small (and the tide level in this region is usually less than a meter). The
consistency between the SNPP/VIIRS and S3A/OLCI depths echoes the
assessment results of the synthetic data in Fig. 3, where the depths
derived with 2-SOA are highly comparable for these two satellites.

6. Discussion

The spectral optimization approach uses typically R,s(A) to estimate
multiple shallow water properties including water depth (Dekker et al.,
2011; Doerffer and Fisher, 1994; Lee et al., 1998; Lee et al., 1999;
Philpot, 1989). This approach is sensitive to the number and position of
wavelengths included in R,(A). In general, a hyper-spectral R,(A)
usually generates much more accurate water depth retrievals than an
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Fig. 9. (a) The bathymetric map (in meters) in the Bahamas derived from SNPP/VIIRS images (the black dots indicate the sites with available navigation depth data).
(b) Validation of SNPP/VIIRS-derived depths with the water depth data from the nautical chart (with colors and contours indicating the data density). (c) The
bathymetry map derived from S3A/OLCI images using 2-SOA (the black dots indicate the sites with available depth data). (d) Validation of S3A-derived depths with
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Fig. 10. Relative difference (¢) of R,(443) values in two collocated satellite images in three different benthic environments: (a) coral reefs, (b) seagrass, and (c) sand.
The relative difference is derived as ¢ = [R"*(t) — R®*(t2)1/R>?(t2) X 100%. The detailed information on the L8/0OLI, S3A/OLCI, and SNPP/VIIRS images is
given in Table 1.
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Fig. 11. Influence of the water level difference induced by tides (AH) on Ry
(443) in shallow waters (0-30 m). The simulations considered various inherent
optical properties and bottom albedo randomly sampled from the synthetic data
for each bottom types; the total number of simulations is 28,479. Eight levels of
AH are considered, which vary from —0.4 m to 0.4 m, with a step of 0.1 m.

R,(A) spectrum with 3-7 bands (Lee and Carder, 2002). The 2-SOA
approach takes advantage of the temporal characteristics of water and
bottom properties such that it can mitigate the limitation imposed by
the few wavelengths to eventually obtain better-constrained retrievals
from multi-spectral ocean color observations. Two questions specific to
the 2-SOA algorithm are worth further discussion: temporal variation
and algorithm limitation.
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6.1. Temporal variation of satellite R,s(\.)

Our analyses demonstrated that 2-SOA could estimate accurate
bathymetry by including two reflectance spectra in one optimization
procedure (Fig. 3 and Table 4). The number of spectra involved in the
optimization is the fundamental distinction from the standard approach
or 1-SOA. It is also obvious that, if R°>(\,t;) and R,**(A, t,) are the
same, the two-spectrum optimization of Eq. (14) will revert to the one-
spectrum optimizaiton of Eq. (12). Should such a situation occur, one
would expect equivalent performance for 2-SOA and 1-SOA. Thus, it is
important to understand that the temporal variation of R,5(A) in shallow
environments, specifically, of their absolute spectral values, are caused
at least to a large degree by the variation of water IOPs. With the col-
located satellite images (Table 1), we assessed the relative percentage
difference for satellite-measured R,(443) values in shallow waters as
e = [Rs®(t1) — R:P(6)1/R® () % 100%. As shown in Fig. 10, the
values of R,(443) in two images are found to vary significantly (far
exceeding + 25%) over the vast majority of the shallow waters
(0-30 m), supporting the application of 2-SOA. Such temporal variation
can be explained by the fact that the shallow waters are liable to the
action of wind stress and current advection, and favor a dynamic en-
vironment with variable water absorption and backscattering coeffi-
cients (Russell et al., 2019).

It is acknowledged that, even with high revisit frequency, two
consecutive satellite images will capture image data impacted with
different tide phases. In this study, the variation of water level differ-
ence due to the tidal influence is usually within half meters, which are
small in comparison to the uncertainties of some in situ water depth
data. Still, the tide-induced water level difference (AH) on two images
could result in different R,(A) spectra. This is expected as the water
column contributes to the light attenuation in accordance with the ra-
diance transfer. To understand the role of the tide, we carried out a
sensitivity analysis for the R,(A) spectra based on the model given in
Eq. (7). It is assumed that H is the water depth for the first image and
H + AH for the second image. We randomly sampled the water IOPs
and bottom albedo from the synthetic data for each of the three benthic
substrates. As shown in Fig. 11, a tide difference between —0.4 m and
0.4 m barely impacts R,(443) for waters deeper than five meters, ir-
respective of the bottom types. For waters shallower than five meters,
however, AH does exert non-negligible influence on R,y(443). The
maximum differences are usually present in the shallowest waters; the
median absolute percentage errors are less than 20%. Compared with
the results given in Fig. 10, the influence of the tides on the remote
sensing reflectance appears small.

There is limited knowledge of the temporal change of the bottom
albedo. A recent satellite analysis reported possible seasonal fluctua-
tions of the bottom albedo (Barnes et al., 2018). This time scale (i.e.,
seasonal) is long enough that it will not be a problem for obtaining
required images from an ocean color satellite. Another study reported
rapid wind-driven shifting of unattached benthic macroalgae within
half months in the lower Exumas, Bahamas (Dierssen et al., 2009).
Furthermore, some benthic substrates and henceforth bottom albedo

Table 5
Same as Table 4 but for the bottom albedo (B) at a reference wavelength.
L8/0LIL SNPP/VIIRS S3A/OLCIL
coral seagrass sand coral seagrass sand coral seagrass sand
[g] 203% 167% 50% 187% 263% 24% 145% 139% 19%
1-SOA T 203% 167% 8% 187% 263% 10% 145% 139% 7%
RMSD* 0.18 0.17 0.21 0.21 0.23 0.18 0.19 0.17 0.16
[g] 87% 83% 31% 91% 132% 18% 74% 80% 16%
2-SOA T 67% 41% 6% 88% 132% 8% 63% 65% 7%
RMSD 0.21 0.21 0.21 0.19 0.23 0.17 0.18 0.19 0.16

@ RMSD is given as dimensionless value.
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can also be impacted by extreme weather or long-term climate change
(Hoegh-Guldberg, 1999). Such episodic variations in the bottom al-
bedo, if neglected, will cause some errors in water depth retrievals for
all algorithms. From an operational perspective, however, these events
are less likely to be a ubiquitous matter.

6.2. Limitation and uncertainty

The processing routines of satellite ocean color measurements flag
or mask optically shallow pixels (OSP) based on bathymetry. A typical
example is the coastal zone (COASTZ) Level-2 quality control flag
(12_flag) developed by NASA. With that flag, the areas shallower than
30 m can be identified as OSP in the ocean color images; a recent up-
date is available from McKinna and Werdell (2018). That approach does
not specifically determine whether a pixel is optically shallow, which
dictates the range of applicability of the shallow water algorithms in-
cluding 2-SOA. In the current analysis, we briefly discussed the con-
tribution of bottom reflection to R,s(A) and its potential influence on the
algorithm performance. However, it is not clear if a threshold for the
bottom ratio can be established to separate optically shallow and deep
waters. Such a threshold, if exists, will vary with the bottom types and
water's optical properties.

Adoption of a fixed bottom spectrum in the algorithm is common for
shallow water remote sensing (Barnes et al., 2018; Goodman et al.,
2008; Lee et al., 2010). The reason for this practice lies in the difficulty
of determining it from the input R,s(A) spectra. In a recent study, Garcia
et al. (2018) demonstrated that the benthic classification based on
hyper-spectral R,(A) data is a very complex problem. The three simu-
lated bottom substrates are specifically intentioned in this study. De-
spite the uncertainties brought about by the mismatch between them
and the bottom spectrum adopted by 2-SOA, our assessments are more
realistic than those assuming an exactly known bottom spectrum. Other
methods do exist for tackling the bottom spectra, such as the blending
of a few pre-fixed bottom spectra (McKinna et al., 2015). A potential
problem incurred therein is the addition of at least one new unknown
quantity to the optical models/relationships of Eq. (11) and Eq. (13),
which might undermine the application of ocean color sensors with too
few wavelengths, such as L8/OLL

The 2-SOA approach estimates bathymetry and other properties
simultaneously, including the bottom albedo. After comparing each
quantity, we found that the bottom albedo retrievals can also be sub-
stantially improved by the 2-SOA approach. In Table 5, the statistical
results for estimated bottom albedo at ~555 nm are presented along
with those from 1-SOA. The model performance, as demonstrated for B,
is very similar to the above observations for water depth retrievals. Yet,
the magnitudes of the uncertainties, especially for |£| and &, are close to
100% even for the 2-SOA approach, partly due to the very small values
adopted for B (Table 3). Dependence on water depth is observable for
model-derived bottom albedo as well (results not presented). We note
that, as the current approach takes a fixed bottom spectrum, it is not
clear how to appropriately interpret the resulted bottom albedo.

The spectral optimization approach relies on the accuracy of the
absolute values of R,(A). It is certain that satellite R,;(\.) measurements
are subject to errors as a result of insufficient calibration and/or at-
mospheric correction over shallow waters. Recent validation effort has
provided preliminary evidence for the R,(A) errors in shallow waters
(Wei et al., 2018). Errors in R,5(A) data can propagate to the subsequent
retrieval of water bathymetry (Garcia et al., 2014b). This makes it
challenging to compare the satellite-derived bathymetry with field-de-
rived bathymetry. At present, there is a lack of an effective approach to
identify the data quality of the satellite R,(A) spectra in optically
shallow environments.

7. Conclusions

Polar-orbiting ocean color satellites image global waters with
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spectral, spatial and temporal information, providing a great data re-
source for remote sensing of important shallow water properties. In this
study, we presented a novel algorithm that makes use of the temporal
variation in satellite R,5(A) data. As the water depth and bottom albedo
approximately remain the same at two acquisition times, the temporal
variation of R,(A) is mostly a result of the variation of the water in-
herent optical properties. As such, our algorithm employs two multi-
spectral R,(A) spectra in one optimization process to obtain better-
constrained estimation for water depth. To our knowledge, this study
represents the first effort that has considered the temporal variation in
the satellite image data for semi-analytical bathymetry retrieval.

We evaluated the two-spectrum optimization algorithm with the
synthesized data, with a focus on Landsat-8, SNPP, and Sentinel-3A
satellites. The analyses show that the new algorithm can substantially
improve the estimation of water depths over coral reef, seagrass, and
sand substrates. The most pronounced performance improvement is
found with Landsat-8 since it has the smallest number of visible bands.
Although the SNPP and Sentinel-3A satellites have different band set-
tings, our analyses show much improved yet comparable water depth
retrieval using the new algorithm. This study provides a proof of con-
cept that the temporal variation in multi-spectral satellite ocean color
data can be leveraged for accurate water depth retrievals with a phy-
sics-based scheme. We acknowledge that there is room for further al-
gorithm improvement. In particular, the retrievals in waters shallower
than five meters need to be improved, and more accurate modeling of
benthic substrates is still needed. Nevertheless, the new approach has
shown to be applicable to Landsat-8, SNPP, and Sentinel-3A and
probably many other multi-spectral ocean color satellites for reliable
bathymetry derivation.
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